Hijos de Eva

28/2/2005

Paradoja de Olbers

Filed under: — Quintanar @ 11:18 pm

La Paradoja de Olbers, formulada por el astrónomo alemán Heinrich Wilhelm Olbers en 1823, y anteriormente mencionada por Johannes Kepler en 1610 y por Halley y Cheseaux en el siglo XVIII, es la afirmación paradójica de que en un universo estático e infinito el cielo nocturno debería ser brillante:

Si el universo se supone infinito, y que contiene un número infinito de estrellas luminosas uniformemente distribuidas, entonces cada linea visual debería terminar eventualmente en la superficie de una estrella. El brillo observado de la superficie es independiente de la distancia a la que esté, el área aparente de una estrella disminuye con el cuadrado de la distancia y el número de estrellas esperado aumenta con el cuadrado de la distancia. Así, cada punto en el cielo debería ser tan brillante como la superficie de una estrella.

Debe aclararse que para que las estrellas parezcan «uniformemente distribuidas» en el espacio, deben estar también uniformemente distribuidas en el tiempo, porque cuanto más lejos se observa, más antiguo es lo que se observa. A una escala infinita, significa que el universo debe tener una edad infinita sin cambios radicales en la naturaleza de las estrellas durante ese tiempo.

Kepler vio esto como un argumento para un universo finito, o al menos para un número finito de estrellas, pero esto no es convincente por lo que se discute a continuación.

Un modo de explicarlo es que el universo no sea transparente, y que la luz de estrellas distantes sea bloqueada por estrellas oscuras intermedias o absorbida por polvo o gas, de modo que sólo la luz proveniente de una distancia finita pueda llegar al observador. A pesar de ello, esta explicación no resuelve la paradoja, ya que de acuerdo con la primera ley de la termodinámica, la energía debe conservarse, de modo que la materia intermedia se calentaría y liberaría la energía (posiblemente en otra longitud de onda). Esto daría como resultado, otra vez, la recepción uniforme de radiación desde todas las direcciones, lo que no se observa.

Otra explicación ofrecida señala el hecho de que cada estrella contiene una cantidad finita de materia, por lo que solo brilla por un periodo finito de tiempo, después del cual termina su combustible. El primero en defender esta teoría parece haber sido el poeta y escritor Edgar Allan Poe. A pesar de ello, la paradoja se mantiene si uno supone que las estrellas se crean constantemente en un lugar aleatorio del universo, brillan por un periodo limitado de tiempo, y desaparecen.

Posibles resoluciones

Esta paradoja se puede resolver de varias formas.

Hay que contar la enorme cantidad de objetos que son opacos o que absorven en parte las radiacciones (como las nubes de gas) y que pueden estar situados en nuestra linea de visión hacia esas estrellas. Incluso si consideraramos que hay un número infinito de estrellas, también hay que considerar un número también infinito de objetos opacos entre medias.

Si el universo lleva existiendo una cantidad finita de tiempo (como sugiere la teoría del Big Bang), entonces sólo la luz de una cantidad finita de estrellas ha tenido tiempo de llegar a nosotros, por lo que la paradoja desaparece. De modo alternativo, si el universo se está expandiendo, y las estrellas más distantes se alejan de nosotros (lo que también aparece en la teoría del Big Bang), entonces su luz sufre un corrimiento al rojo, lo que disminuye su intensidad, de nuevo resolviendo la paradoja. Cualquiera de los dos efectos por sí sólo funcionaría, pero, de acuerdo con la teoría del Big Bang, ambos están sucediendo al mismo tiempo, aunque el tiempo finito tiene un efecto más importante en la resolución de la paradoja. Algunos ven la existencia de esta paradoja como prueba de la teoría del Big Bang.

Incluso con la teoría del Big Bang y su prueba del corrimiento hacia el rojo, podemos establecer la edad finita del universo (en su forma actual) a través de una evaluación matemática del hidrógeno. Suponemos que la cantidad de masa en las estrellas, dividido por la cantidad total de masa en el universo es distinto de cero. Tras un cierto periodo de tiempo, alguna estrella habrá convertido demasiado hidrógeno en helio (o un elemento más pesado) para continuar su fusión nuclear. De esto podemos concluir que en una unidad de tiempo, la cantidad de hidrógeno transformada en helio en una estrella cualquiera, dividida por la masa de la estrella, es distinto de cero. Si combinamos esto con nuestra afirmación anterior, podemos concluir que la cantidad de hidrógeno convertido en helio por todas las estrellas dividida por la masa del universo es distinto de cero. No se conoce ningún proceso que puede convertir elementos más pesados en hidrógeno en la cantidad suficiente, y si existiese, seguramente violaría la segunda ley de la termodinámica. Por ello, el tiempo necesario para que las estrellas conviertan todo el hidrógeno del universo en helio es finito, y no revertirá a su estado inicial. Después, sólo estrellas capaces de consumir elementos más pesados seguirán existiendos (y se consumirán cuando alcancen el hierro, algo conocido como la muerte térmica del universo). Esto todavía no ha sucedido, así que o el universo tiene una edad finita, o ha sufrido grandes cambios a lo largo de su historia, o existe un proceso desconocido (del cual no tenemos pruebas directas) que produce hidrógeno para mantenerlo funcionando.

Benoit Mandelbrot ha propuesto un modo distinto de resolverlo, que no depende de la teoría del Big Bang. Mantiene que las estrellas en el universo no tienen por qué estar uniformemente distribuidas, sino que lo están fractalmente, como el polvo de Cantor, lo que explicaría las amplias áreas oscuras. Actualmente no se sabe si esto es cierto o no, aunque recientes estudios con satélites han descubierto que la radiación cósmica de fondo es isotrópica hasta 1 parte en 10000.

[Extraído de Wikipedia, la enciclopedia libre]

Comments are closed.

Powered by WordPress